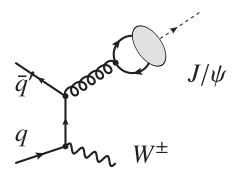
Studies of associated charmonium production at ATLAS

Bruce Yabsley

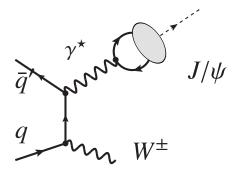
ATLAS / University of Sydney
ARC Centre of Excellence for Particle Physics at the Terascale
(http://www.coepp.org.au/)

CHARM 2015, 21st May, Wayne State University, Detroit

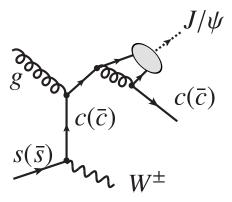


Outline

- **1** J/ ψ production in association with {W, Z}
 - Associated $J/\psi~W$ and $J/\psi~Z$ production processes
 - ullet Double parton scattering as a source of $J/\psi~W$ and $J/\psi~Z$
- Quarkonium studies at ATLAS
- 3 Associated production:
 - selection criteria
 - acceptance
- **4** Prompt J/ψ in association with W^{\pm} at $\sqrt{s}=7~{\rm TeV}$
- **5** Prompt J/ψ in association with Z^0 at $\sqrt{s}=8~{\rm TeV}$
- **6** Summary


provides rich observables for probing ${\cal Q}$ production mechanisms

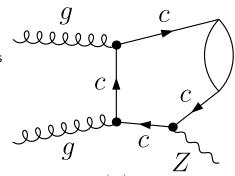
 J/ψ W: a clear color octet signal?


provides rich observables for probing ${\cal Q}$ production mechanisms

- J/ψ W: a clear color octet signal?
 - but ∃ EM contributions

provides rich observables for probing ${\cal Q}$ production mechanisms

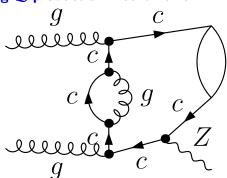
- J/ψ W: a clear color octet signal?
 - but ∃ EM contributions
 - & strange sea contributions



provides rich observables for probing ${\cal Q}$ production mechanisms

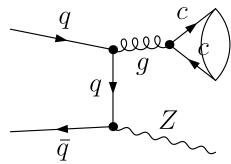
SMLZG: Song/Ma/Li/Zhang/Guo, JHEP 02 (2011) 071; err. ibid. 12 (2012) 010;

- J/ψ W: a clear color octet signal?
 - but ∃ EM contributions
 - & strange sea contributions


 J/ψ Z: color singlet at LO

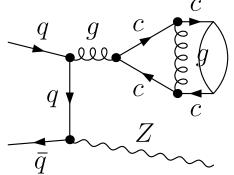
provides rich observables for probing ${\cal Q}$ production mechanisms

SMLZG: Song/Ma/Li/Zhang/Guo, JHEP 02 (2011) 071; err. ibid. 12 (2012) 010;


- J/ψ W: a clear color octet signal?
 - but ∃ EM contributions
 - & strange sea contributions
 - J/ψ Z: color singlet at LO
 - color singlet at NLO

provides rich observables for probing ${\cal Q}$ production mechanisms

SMLZG: Song/Ma/Li/Zhang/Guo, JHEP 02 (2011) 071; err. ibid. 12 (2012) 010;


- J/ψ W: a clear color octet signal?
 - but ∃ EM contributions
 - & strange sea contributions
 - J/ψ Z: color singlet at LO
 - color singlet at NLO
 - color octet at LO

provides rich observables for probing $\mathcal Q$ production mechanisms

SMLZG: Song/Ma/Li/Zhang/Guo, JHEP 02 (2011) 071; err. ibid. 12 (2012) 010;

- J/ψ W: a clear color octet signal?
 - but ∃ EM contributions
 - & strange sea contributions
 - J/ψ Z: color singlet at LO
 - color singlet at NLO
 - color octet at LO
 - color octet at NLO

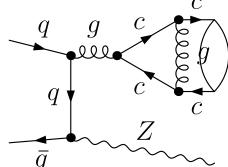
provides rich observables for probing Q production mechanisms

SMLZG: Song/Ma/Li/Zhang/Guo, JHEP 02 (2011) 071; err. ibid. 12 (2012) 010;

- J/ψ W: a clear color octet signal?
 - but ∃ EM contributions
 - & strange sea contributions
 - J/ψ Z: color singlet at LO
 - color singlet at NLO
 - color octet at LO
 - color octet at NLO

SMLZG: octet rates larger, but note

NLO-vs-LO & calculation scale are controversial (see GLLW)


provides rich observables for probing ${\cal Q}$ production mechanisms

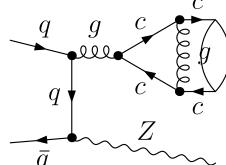
- J/ψ W: a clear color octet signal?
 - but ∃ EM contributions
 - & strange sea contributions
 - J/ψ Z: color singlet at LO
 - color singlet at NLO
 - color octet at LO
 - color octet at NLO

SMLZG: octet rates larger, but note

NLO-vs-LO & calculation scale are controversial (see GLLW)

 J/ψ {W, Z} final states can also probe fundamental physics:

provides rich observables for probing ${\cal Q}$ production mechanisms

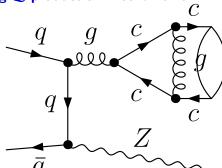

- J/ψ W: a clear color octet signal?
 - but ∃ EM contributions
 - & strange sea contributions
 - J/ψ Z: color singlet at LO
 - color singlet at NLO
 - color octet at LO
 - color octet at NLO

SMLZG: octet rates larger, but note

NLO-vs-LO & calculation scale are controversial (see GLLW)

• $H \rightarrow Q + \{\gamma, W, Z\}$ measurements

provides rich observables for probing ${\cal Q}$ production mechanisms


- J/ψ W: a clear color octet signal?
 - but ∃ EM contributions
 - & strange sea contributions
 - J/ψ Z: color singlet at LO
 - color singlet at NLO
 - color octet at LO
 - color octet at NLO

SMLZG: octet rates larger, but note

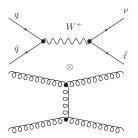
- $H \rightarrow Q + \{\gamma, W, Z\}$ measurements
- BSM tests charged Higgs, new light scalars,...

Geoff Bodwin's talk on Monday at this meeting:

Theoretical Aspects Quarkonium Production in Vacuum

Geoffrey Bodwin (ANL)

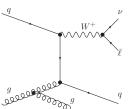
What do we need from experiment?


- Measurements of additional production processes
 - double-charmonium production
 - $-J/\psi + Z$, $J/\psi + W^{\pm}$
 - $-J/\psi+{\rm jet}$

 $J/\psi\{W,Z\}$ can also be produced by double parton scattering.

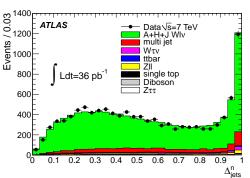
We rely on our study of W + 2 jet production, in the usual model of DPS: extraction of two partons from each of proton 1 and proton 2,

with factorization
$$f_{ij}(x_i, x_j, \mu_F) = f_i(x_i, \mu_F)f_j(x_j, \mu_F)(1 - x_i - x_j)\Theta(1 - x_i - x_j)$$


and modelling the DPS sub-processes

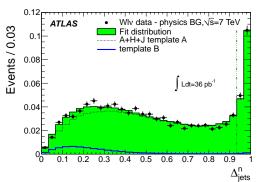
$$\hat{\sigma}_W(s) = \sigma_W(s)$$

and


$$\hat{\sigma}_{2j}(s) = \sigma_{2j}(s)$$

cf. DIRECT PROD^N:

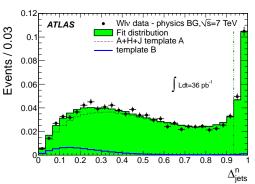
$$36~{
m pb}^{-1}~{
m of}~\sqrt{s}=7~{
m TeV}~{
m data}~{
m from}~{
m the}~2010~{
m run}$$
 $W o e
u (\mu
u):~ p_T^\ell > 20~{
m GeV},~ |\eta^\ell| < 2.47~(2.4),~ E_T^{
m miss} > 25~{
m GeV},~ m_T > 40~{
m GeV}$ two jets: $p_T > 20~{
m GeV},~ |y| < 2.8~{
m (anti-}k_T,~ R = 0.4;~{
m isolation}~{
m from}~e~(\mu))$


• 5% (8%) bkgd: subtracted

 $36 \, {
m pb}^{-1} \,$ of $\sqrt{s} = 7 \,$ TeV data from the 2010 run $W o e
u \, (\mu
u) : \; p_T^\ell > 20 \,$ GeV, $|\eta^\ell| < 2.47 \,$ (2.4), $E_T^{
m miss} > 25 \,$ GeV, $m_T > 40 \,$ GeV two jets: $p_T > 20 \,$ GeV, $|y| < 2.8 \,$ (anti- k_T , R = 0.4; isolation from $e \, (\mu)$)

- 5% (8%) bkgd: subtracted
- fit direct prodⁿ and DPS
 MC templates to the normalized dijet p_T balance,

$$\Delta_{
m jets}^n = rac{\left|ec{p}_{T}^{\ J_{1}} + ec{p}_{T}^{\ J_{2}}
ight|}{\left|ec{p}_{T}^{\ J_{1}}
ight| + \left|ec{p}_{T}^{\ J_{2}}
ight|}$$

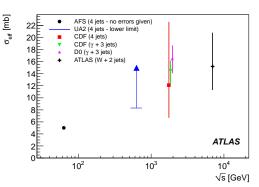


 $36 \, {
m pb}^{-1}$ of $\sqrt{s} = 7 \, {
m TeV}$ data from the 2010 run $W o e
u \; (\mu
u)$: $p_T^\ell > 20 \; {
m GeV}, \; |\eta^\ell| < 2.47 \; (2.4), \; E_T^{
m miss} > 25 \; {
m GeV}, \; m_T > 40 \; {
m GeV}$ two jets: $p_T > 20 \; {
m GeV}, \; |y| < 2.8 \; ({
m anti-}k_T, \; R = 0.4; \; {
m isolation} \; {
m from} \; e \; (\mu))$

- 5% (8%) bkgd: subtracted
- fit direct prodⁿ and DPS
 MC templates to the normalized dijet p_T balance,

$$\Delta_{
m jets}^n = rac{\left|ec{p}_{T}^{\ J_{1}} + ec{p}_{T}^{\ J_{2}}
ight|}{\left|ec{p}_{T}^{\ J_{1}}
ight| + \left|ec{p}_{T}^{\ J_{2}}
ight|}$$

• W + 0 jet & low-pileup 2 jet samples for determination of σ_W and σ_{2j}



36 pb⁻¹ of $\sqrt{s} = 7$ TeV data from the 2010 run $W \to e \nu \; (\mu \nu)$: $p_T^{\ell} > 20$ GeV, $|\eta^{\ell}| < 2.47$ (2.4), $E_T^{\text{miss}} > 25$ GeV, $m_T > 40$ GeV two jets: $p_T > 20$ GeV, |y| < 2.8 (anti- k_T , R = 0.4; isolation from $e \; (\mu)$)

- 5% (8%) bkgd: subtracted
- fit direct prodⁿ and DPS
 MC templates to the normalized dijet p_T balance,

$$\Delta_{
m jets}^n = rac{\left|ec{p}_{T}^{\ J_1} + ec{p}_{T}^{\ J_2}
ight|}{\left|ec{p}_{T}^{\ J_1} \left| + \left|ec{p}_{T}^{\ J_2}
ight|}
ight|}$$

• W + 0 jet & low-pileup 2 jet samples for determination of σ_W and σ_{2j}

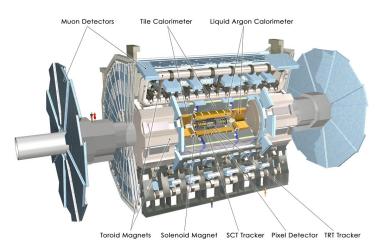
• $\sigma_{\rm eff}(7~{\rm TeV})=15\pm3\,({\rm stat.})\,_{-3}^{+5}\,({\rm syst.})\,{\rm mb}$: consistent with $\approx {\rm TeV}$ meas^{ts}; conditions comparable to associated $J/\psi\,\{W,Z\}$ production

Quarkonium studies at ATLAS: analyses

Production cross-sections:

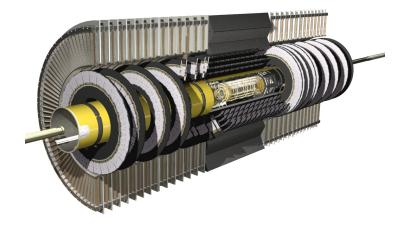
J/ψ differential, prompt & non-prompt	NPB 850, 387 (2011)
$\Upsilon(1S)$ fiducial	PLB 705, 9 (2011)
$\Upsilon(nS)$ differential	PRD 87, 052004 (2013)
$\chi_{c1,c2}$ differential, prompt & non-prompt	JHEP 07 (2014) 154
$\psi(2S)$ differential, prompt & non-prompt	JHEP 09 (2014) 079

Spectroscopy:

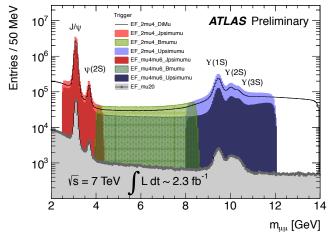

$\chi_{bJ}(nP)$; $\chi_{bJ}(3P)$ first observation	PRL 108, 152001 (2012)
$X_b o \pi^+\pi^-\Upsilon(1S)$ search	PLB 740, 199 (2015)

Associated production:

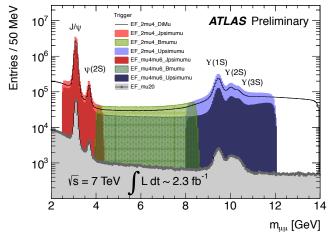
prompt J/ψ in association with W^\pm	JHEP 04 (2014) 172
prompt J/ψ in association with Z^0	$\texttt{arXiv:} 1412.6428 \rightarrow EPJC$


Quarkonium studies at ATLAS: the detector

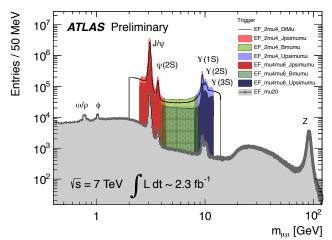
optimized for a range of high- p_T discovery physics in $\sqrt{s}=14~{\rm TeV}~pp$ collisions


Quarkonium studies at ATLAS: the detector

typical quarkonium analysis: ATLAS is \approx a large {Si pixel & strip, TRT} vertexing and tracking system, surrounded by trigger and muon ID


Quarkonium studies at ATLAS: trigger conditions

• onia analyses: high- $p_T \mu$, $M(\mu\mu)$ -restricted-dimuon, ... triggers


Quarkonium studies at ATLAS: trigger conditions

- onia analyses: high- p_T μ , $M(\mu\mu)$ -restricted-dimuon, . . . triggers
- typical case: increasing $\mathcal{L} \to \mathsf{higher}\text{-}p_{\mathcal{T}}$ triggers, prescaling, . . .

Quarkonium studies at ATLAS: trigger conditions

- onia analyses: high- p_T μ , $M(\mu\mu)$ -restricted-dimuon, . . . triggers
- typical case: increasing $\mathcal{L} \to \mathsf{higher}\text{-}p_{\mathcal{T}}$ triggers, prescaling, . . .
- $J/\psi \{W, Z\}$: trigger on W/Z lepton; better J/ψ acceptance

Associated production: selection criteria

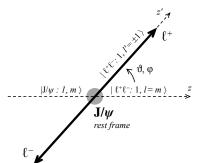
$$J/\psi \to \mu^+\mu^-$$
 selection:

μ: |η| < 2.5; $p_T > 3.5$ (2.5) GeV for |η| < (>)1.3; within 10 mm of PV along z ψ: |y| < 2.1, $p_T > 8.5$ GeV; > 1 $p_T > 4$ GeV muon; > 1 "combined" muon

$\mathsf{J}/\psi\,\mathsf{W}^\pm$:

- $p_T^{\psi} < 30 \text{ GeV}, m_{\mu\mu} \in (2.5, 3.5) \text{ GeV}$
- single-muon trigger: $p_T > 18 \text{ GeV}$
- W^{\pm} decay muon matches trigger; $|\eta| < 2.4, \ p_T > 25 \ {
 m GeV},$ combined closest approach PV $< 1 \ {
 m mm}$ in z transverse $d_0/\sigma(d_0) < 3$; isolated
- ullet Z^0 veto: W decay & OS ψ muons
- $E_T^{
 m miss} > 20~{
 m GeV}$; calculation includes clusters with $|\eta| < 4.9$
- $m_T > 40 \text{ GeV}$

${\sf J}/\psi \; {\sf Z}^0$:

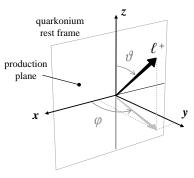

- $p_T^{\psi} < 100 \text{ GeV}, \ m_{\mu\mu} \in (2.6, 3.6)$
- single μ or e trigger: $p_T > 24~{\rm GeV}$
- ≥ 1 decay ℓ must match trigger; μ : $|\eta| < 2.4$ and $p_T > 25$ GeV; e: "medium" ID, $p_T > 25$ GeV
- μ : $|\eta| < 2.5$, $p_T > 15$ GeV, combined
- e: $|\eta| < 2.47$, $p_T > 15$ GeV, "loose" ID, isolated
- $|m(\ell^+\ell^-) m_Z| < 10 \text{ GeV}$
- J/ψ & Z^0 vertices $< 10 \,\mathrm{mm}$ in z

Faccioli, Lourenco, Seixas, and Wöhri, EPJC 69, 657-673 (2010)

For a J/ψ of a given $(|y|, p_T)$, the acceptance \mathcal{A} is the probability that the muons pass the (η, p_T) selection requirements.

Depends on the J/ψ spin alignment: the distribution $W(\cos\vartheta,\varphi)$

$$\propto \frac{\mathcal{N}}{(3+\lambda_{\vartheta})} \left(1 + \lambda_{\vartheta} \cos^{2} \vartheta + \lambda_{\varphi} \sin^{2} \vartheta \cos 2\varphi + \lambda_{\vartheta\varphi} \sin 2\vartheta \cos \varphi + \lambda_{\varphi}^{\perp} \sin^{2} \vartheta \sin 2\varphi + \lambda_{\vartheta\varphi}^{\perp} \sin 2\vartheta \sin \varphi\right)$$

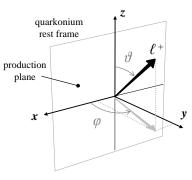

Faccioli, Lourenco, Seixas, and Wöhri, EPJC 69, 657-673 (2010)

For a J/ψ of a given $(|y|, p_T)$, the acceptance \mathcal{A} is the probability that the muons pass the (η, p_T) selection requirements.

Depends on the J/ψ spin alignment: the distribution $W(\cos \vartheta, \varphi)$

$$\begin{split} &\propto \ \frac{\mathcal{N}}{\left(3+\lambda_{\vartheta}\right)} \left(1+\lambda_{\vartheta}\cos^2\vartheta \right. \\ &+ \ \lambda_{\varphi}\sin^2\vartheta\cos2\varphi \ + \ \lambda_{\vartheta\varphi}\sin2\vartheta\cos\varphi \\ &+ \ \lambda_{\varphi}^{\perp}\sin^2\vartheta\sin2\varphi \ + \ \lambda_{\vartheta\varphi}^{\perp}\sin2\vartheta\sin2\varphi \right. \end{split}$$

For inclusive production: reflection-odd terms unobservable (parity)


Faccioli, Lourenco, Seixas, and Wöhri, EPJC 69, 657-673 (2010)

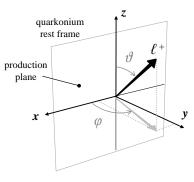
For a J/ψ of a given $(|y|, p_T)$, the acceptance \mathcal{A} is the probability that the muons pass the (η, p_T) selection requirements.

Depends on the J/ψ spin alignment: the distribution $W(\cos\vartheta,\varphi)$

$$\propto \frac{\mathcal{N}}{(3+\lambda_{\vartheta})} \left(1 + \lambda_{\vartheta} \cos^{2} \vartheta + \lambda_{\varphi} \sin^{2} \vartheta \cos 2\varphi + \lambda_{\vartheta\varphi} \sin 2\vartheta \cos \varphi + \lambda_{\varphi}^{\perp} \sin^{2} \vartheta \sin^{2} \vartheta \sin 2\varphi + \lambda_{\vartheta\varphi}^{\perp} \sin 2\vartheta \sin \varphi \right)$$

For inclusive production: reflection-odd terms unobservable (parity)

Faccioli, Lourenco, Seixas, and Wöhri, EPJC 69, 657-673 (2010)


For a J/ψ of a given $(|y|, p_T)$, the acceptance \mathcal{A} is the probability that the muons pass the (η, p_T) selection requirements.

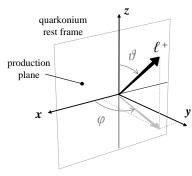
Depends on the J/ψ spin alignment: the distribution $W(\cos \vartheta, \varphi)$

$$\propto \frac{\mathcal{N}}{(3+\lambda_{\vartheta})} \left(1 + \lambda_{\vartheta} \cos^{2} \vartheta + \lambda_{\varphi} \sin^{2} \vartheta \cos 2\varphi + \lambda_{\vartheta\varphi} \sin 2\vartheta \cos \varphi + \lambda_{\varphi}^{\perp} \sin^{2} \vartheta \sin^{2} \vartheta \sin 2\varphi + \lambda_{\vartheta\varphi}^{\perp} \sin 2\vartheta \sin \varphi \right)$$

For inclusive production: reflection-odd terms unobservable (parity)

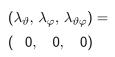
ullet limited range of $(\lambda_{artheta},\,\lambda_{arphi},\,\lambda_{arthetaarphi})$ allowed

Faccioli, Lourenco, Seixas, and Wöhri, EPJC 69, 657-673 (2010)

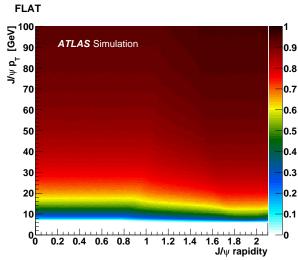

For a J/ψ of a given $(|y|, p_T)$, the acceptance \mathcal{A} is the probability that the muons pass the (η, p_T) selection requirements.

Depends on the J/ψ spin alignment: the distribution $W(\cos \vartheta, \varphi)$

$$\propto \frac{\mathcal{N}}{(3+\lambda_{\vartheta})} \left(1 + \lambda_{\vartheta} \cos^{2} \vartheta + \lambda_{\varphi} \sin^{2} \vartheta \cos 2\varphi + \lambda_{\vartheta\varphi} \sin 2\vartheta \cos \varphi + \lambda_{\varphi}^{\perp} \sin^{2} \vartheta \sin^{2} \vartheta \sin 2\varphi + \lambda_{\vartheta\varphi}^{\perp} \sin 2\vartheta \sin \varphi \right)$$

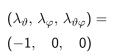

For inclusive production: reflection-odd terms unobservable (parity)

- ullet limited range of $(\lambda_{artheta},\,\lambda_{arphi},\,\lambda_{arthetaarphi})$ allowed
- LHC experiments quote results for each of a set of working points


Associated production: acceptance $A(|y|, p_T; FLAT)$

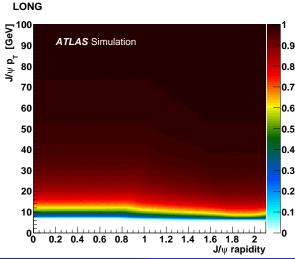
$$W(\cos\vartheta,\varphi)\propto (1+\lambda_\vartheta\cos^2\vartheta+\lambda_\varphi\sin^2\vartheta\cos 2\varphi+\lambda_{\vartheta\varphi}\sin 2\vartheta\cos\varphi)$$

unpolarized production


isotropic distribution

Associated production: acceptance $A(|y|, p_T; LONG)$

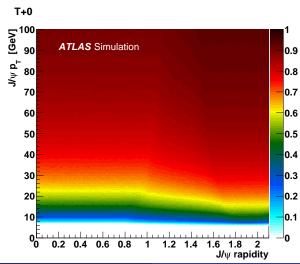
$$W(\cos\vartheta,\varphi)\propto (1+\lambda_\vartheta\cos^2\vartheta+\lambda_\varphi\sin^2\vartheta\cos 2\varphi+\lambda_{\vartheta\varphi}\sin 2\vartheta\cos\varphi)$$


ATLAS Collaboration, ATLAS-BPHY-2014-01, arXiv:1412.6428 ($J/\psi Z^0$)

 J/ψ polarization: longitudinal along z

 $heta \sim 90^\circ$ preferred:

 \approx equal sharing of p_T between muons


Associated production: acceptance $A(|y|, p_T; T+0)$

$$W(\cos\vartheta,\varphi)\propto (1+\lambda_{\vartheta}\cos^2\vartheta+\lambda_{\varphi}\sin^2\vartheta\cos2\varphi+\lambda_{\vartheta\varphi}\sin2\vartheta\cos\varphi)$$

$$(\lambda_{artheta},\,\lambda_{arphi},\,\lambda_{arthetaarphi})= \ (+1,\quad 0,\quad 0)$$

 J/ψ polarization: transverse along z

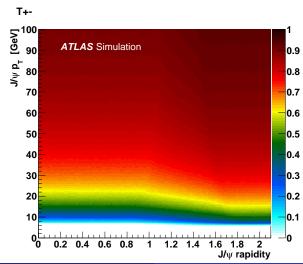
 $\theta \sim \{0,180\}^\circ$ preferred: one μ emerges backward in the Υ rest frame

Associated production: acceptance $A(|y|, p_T; T++)$

$$W(\cos\vartheta,\varphi)\propto (1+\lambda_{\vartheta}\cos^2\vartheta+\lambda_{\varphi}\sin^2\vartheta\cos2\varphi+\lambda_{\vartheta\varphi}\sin2\vartheta\cos\varphi)$$

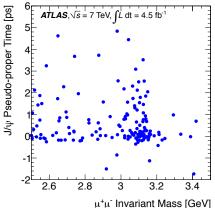
 J/ψ polarization: longitudinal along y

 $\theta \sim \{0,180\}^\circ$ preferred: one μ emerges backward in the Υ rest frame



Associated production: acceptance $A(|y|, p_T; T+-)$

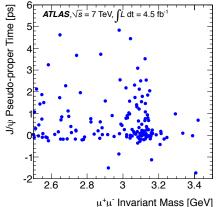
$$W(\cos\vartheta,\varphi)\propto (1+\lambda_{\vartheta}\cos^2\vartheta+\lambda_{\varphi}\sin^2\vartheta\cos2\varphi+\lambda_{\vartheta\varphi}\sin2\vartheta\cos\varphi)$$


 J/ψ polarization: longitudinal along x

 $\theta \sim \{0,180\}^\circ$ preferred: one μ emerges backward in the Υ rest frame

Looking at the events in <u>dimuon invariant mass</u> $\mathbf{m}_{\mu\mu}$ from the vertex fit, $\vec{l} \cdot \vec{r}^{\psi} = \mathbf{m}$

and **pseudo-proper time**
$$au \equiv \frac{\vec{L} \cdot \vec{p}_T^{\,\psi}}{p_T^{\,\psi}} \cdot \frac{m_{\mu\mu}}{p_T^{\,\psi}}$$
, where $\vec{L} = \vec{r}^{\,\psi} - \vec{r}^{\,\text{PV}}$

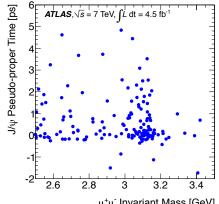

μμ invariant wass [dev]

Looking at the events in dimuon invariant mass $m_{\mu\mu}$ from the vertex fit,

Looking at the events in dimuon invariant mass
$$\mathbf{m}_{\mu\mu}$$
 from the vertand $\mathbf{pseudo-proper\ time}$ $\tau \equiv \frac{\vec{L} \cdot \vec{p}_T^{\,\psi}}{p_T^{\,\psi}} \cdot \frac{m_{\mu\mu}}{p_T^{\,\psi}}$, where $\vec{L} = \vec{r}^{\,\psi} - \vec{r}^{\,\mathrm{PV}}$

149 events:

78 with
$$|y| \le 1.0$$
, 71 with $|y| \in (1.0, 2.1)$

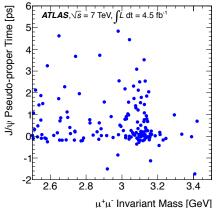


Looking at the events in dimuon invariant mass $m_{\mu\mu}$ from the vertex fit,

Looking at the events in dimuon invariant mass
$$\mathbf{m}_{\mu\mu}$$
 from the vertand $\mathbf{pseudo-proper\ time}$ $\tau \equiv \frac{\vec{L} \cdot \vec{p}_T^{\,\psi}}{p_T^{\,\psi}} \cdot \frac{m_{\mu\mu}}{p_T^{\,\psi}}$, where $\vec{L} = \vec{r}^{\,\psi} - \vec{r}^{\,\mathrm{PV}}$

149 events: 78 with $|y| \le 1.0$, 71 with $|y| \in (1.0, 2.1)$

• evident J/ψ signal

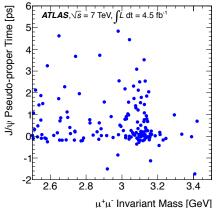


μ⁺μ⁻ Invariant Mass [GeV]

Looking at the events in <u>dimuon invariant mass</u> $m_{\mu\mu}$ from the vertex fit,

and **pseudo-proper time**
$$au \equiv \frac{\vec{L} \cdot \vec{p}_T^{\,\psi}}{p_T^{\,\psi}} \cdot \frac{m_{\mu\mu}}{p_T^{\,\psi}}$$
, where $\vec{L} = \vec{r}^{\,\psi} - \vec{r}^{\,\text{PV}}$

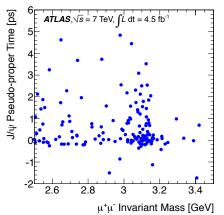
- 149 events: 78 with $|y| \le 1.0$, 71 with $|y| \in (1.0, 2.1)$
- ullet evident J/ψ signal
- both prompt & displaced, for both signal & background



μ⁺μ Invariant Mass [GeV]

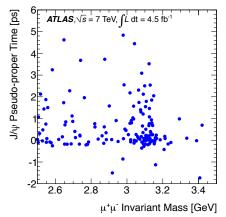
Looking at the events in dimuon invariant mass $m_{\mu\mu}$ from the vertex fit,

and **pseudo-proper time**
$$\tau \equiv \frac{\vec{L} \cdot \vec{p}_T^{\psi}}{p_T^{\psi}} \cdot \frac{m_{\mu\mu}}{p_T^{\psi}}$$
, where $\vec{L} = \vec{r}^{\psi} - \vec{r}^{PV}$


- 149 events: 78 with $|y| \le 1.0$, 71 with $|y| \in (1.0, 2.1)$
- evident J/ψ signal
- both prompt & displaced, for both signal & background
- approach: isolate in turn

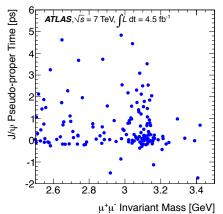
Looking at the events in <u>dimuon invariant mass</u> $m_{\mu\mu}$ from the vertex fit,

and **pseudo-proper time**
$$\tau \equiv \frac{\vec{L} \cdot \vec{p}_T^{\,\psi}}{p_T^{\,\psi}} \cdot \frac{m_{\mu\mu}}{p_T^{\,\psi}}$$
, where $\vec{L} = \vec{r}^{\,\psi} - \vec{r}^{\,\text{PV}}$

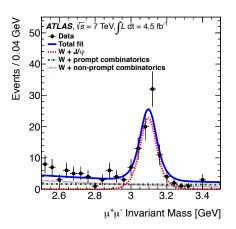

- 149 events: 78 with $|y| \le 1.0$, 71 with $|y| \in (1.0, 2.1)$
- ullet evident J/ψ signal
- both prompt & displaced, for both signal & background
- approach: isolate in turn
 - (1) prompt J/ψ , then

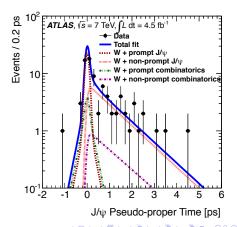
Looking at the events in <u>dimuon invariant mass</u> $m_{\mu\mu}$ from the vertex fit,

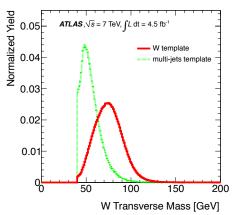
and **pseudo-proper time**
$$\tau \equiv \frac{\vec{L} \cdot \vec{p}_T^{\,\psi}}{p_T^{\,\psi}} \cdot \frac{m_{\mu\mu}}{p_T^{\,\psi}}$$
, where $\vec{L} = \vec{r}^{\,\psi} - \vec{r}^{\,\text{PV}}$


- 149 events: 78 with $|y| \le 1.0$, 71 with $|y| \in (1.0, 2.1)$
- ullet evident J/ψ signal
- both prompt & displaced, for both signal & background
- approach: isolate in turn
 - (1) prompt J/ψ , then
 - (2) associated W^{\pm} contribution

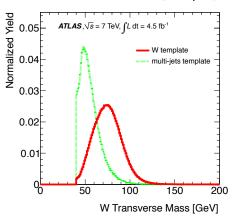
Looking at the events in <u>dimuon invariant mass</u> $m_{\mu\mu}$ from the vertex fit,


and **pseudo-proper time**
$$\tau \equiv \frac{\vec{L} \cdot \vec{p}_T^{\,\psi}}{p_T^{\,\psi}} \cdot \frac{m_{\mu\mu}}{p_T^{\,\psi}}$$
, where $\vec{L} = \vec{r}^{\,\psi} - \vec{r}^{\,\text{PV}}$

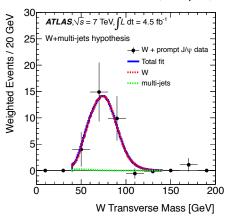

- 149 events: 78 with $|y| \le 1.0$, 71 with $|y| \in (1.0, 2.1)$
- ullet evident J/ψ signal
- both prompt & displaced, for both signal & background
- approach: isolate in turn
 - (1) prompt J/ψ , then
 - (2) associated W^{\pm} contribution
- done separately in the 2|y| bins


same technique used in charmonium production measurements:

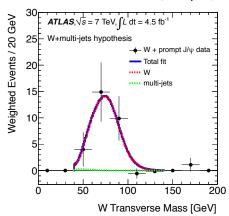
2D fit to $(m_{\mu\mu}, \tau)$ to distinguish prompt ψ , non-prompt ψ , prompt bkgd, non-prompt bkgd



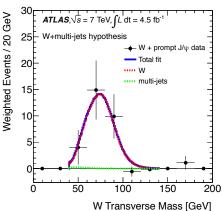
transverse mass $m_T = \sqrt{2p_T^{\mu}E_T^{\text{miss}}(1-\cos(\phi^{\mu}-\phi^{\text{miss}}))}$, to distinguish W^{\pm} signal from multi-jet bkgd events producing $\{\mu, E_T^{\text{miss}}\}$

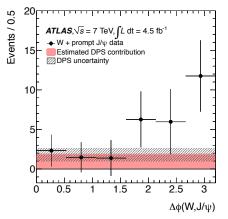

transverse mass $m_T = \sqrt{2p_T^{\mu}E_T^{\text{miss}}(1-\cos(\phi^{\mu}-\phi^{\text{miss}}))}$, to distinguish W^{\pm} signal from multi-jet bkgd events producing $\{\mu, E_T^{\text{miss}}\}$

• templates for W^{\pm} : MC simulation multi-jet: non-isolated μ sample

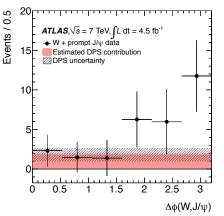

<u>transverse mass</u> $m_T = \sqrt{2p_T^{\mu}E_T^{\text{miss}}}(1-\cos(\phi^{\mu}-\phi^{\text{miss}})],$ to distinguish W^{\pm} signal from multi-jet bkgd events producing $\{\mu, E_T^{\text{miss}}\}$

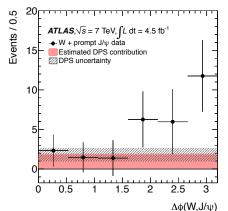
- templates for W^{\pm} : MC simulation multi-jet: non-isolated μ sample
- m_T distⁿ, _sPlot-weighted (glorified bkgd-subtraction) to pick out the signal, and ...


<u>transverse mass</u> $m_T = \sqrt{2p_T^{\mu}E_T^{\text{miss}}}(1-\cos(\phi^{\mu}-\phi^{\text{miss}})],$ to distinguish W^{\pm} signal from multi-jet bkgd events producing $\{\mu, E_T^{\text{miss}}\}$

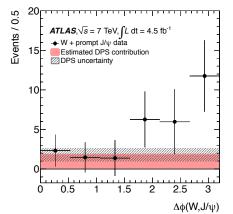

- templates for W^{\pm} : MC simulation multi-jet: non-isolated μ sample
- m_T distⁿ, _sPlot-weighted (glorified bkgd-subtraction) to pick out the signal, and ...
- a fit; W dominates, W^{\pm} : $29.2^{+7.5}_{-6.5}$ events multijets: 0.1 ± 4.6 < 0.31 at 95% cred.

transverse mass $m_T = \sqrt{2p_T^{\mu}E_T^{\text{miss}}(1-\cos(\phi^{\mu}-\phi^{\text{miss}}))}$, to distinguish W^{\pm} signal from multi-jet bkgd events producing $\{\mu, E_T^{\text{miss}}\}$

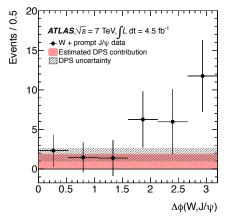

- templates for W^{\pm} : MC simulation multi-jet: non-isolated μ sample
- m_T distⁿ, ${}_{5}\mathcal{P}lot$ -weighted (glorified bkgd-subtraction) to pick out the signal, and ...
- a fit; W dominates, W^{\pm} : 29.2 $^{+7.5}_{-6.5}$ events multijets: 0.1 ± 4.6 < 0.31 at 95% cred.
- cf. pileup: 1.8 ± 0.2 events estimated from W-inclusive, \mathcal{L} , Δz , measured σ_{ψ}

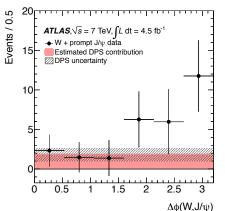


<u>azimuthal angle difference</u> between W^{\pm} and J/ψ ($_{s}\mathcal{P}lot$ -weighted), to distinguish DPS (assumed \approx flat in $\Delta\phi$) from direct production

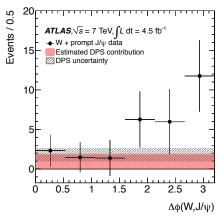

• DPS rate: estimated from

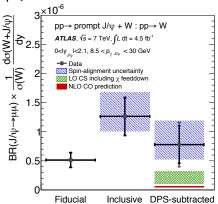
- DPS rate: estimated from
 - ullet DPS ansatz $P_{\psi|W} = \sigma_{\psi}/\sigma_{\mathsf{eff}}$


- DPS rate: estimated from
 - DPS ansatz $P_{\psi|W} = \sigma_{\psi}/\sigma_{\mathrm{eff}}$
 - ATLAS $\sigma_{\rm eff} = 15 \pm 3^{+5}_{-3} \, {\rm mb}$

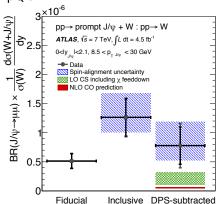

- DPS rate: estimated from
 - ullet DPS ansatz $P_{\psi|W} = \sigma_{\psi}/\sigma_{ ext{eff}}$
 - ATLAS $\sigma_{\rm eff} = 15 \pm 3^{+5}_{-3} \, {\rm mb}$
 - \longrightarrow 10.8 \pm 4.2 events, \lesssim 40% of the sample

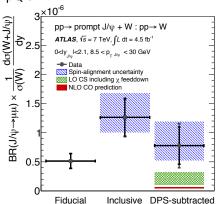
- DPS rate: estimated from
 - DPS ansatz $P_{\psi|W} = \sigma_{\psi}/\sigma_{\mathrm{eff}}$
 - ATLAS $\sigma_{\rm eff} = 15 \pm 3^{+5}_{-3} \, {\rm mb}$
 - \longrightarrow 10.8 \pm 4.2 events, \lesssim 40% of the sample
- DPS shape validated* w Pythia 8



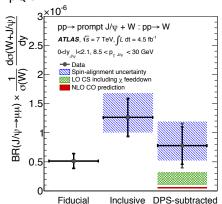

- DPS rate: estimated from
 - DPS ansatz $P_{\psi|W} = \sigma_{\psi}/\sigma_{\mathrm{eff}}$
 - ATLAS $\sigma_{\rm eff} = 15 \pm 3^{+5}_{-3} \, {\rm mb}$
 - \longrightarrow 10.8 \pm 4.2 events, \leq 40% of the sample
- DPS shape validated* w Pythia 8
- direct CS, CO: peaked $\Delta\phi \to \pi$

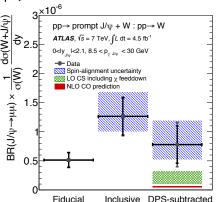
<u>azimuthal angle difference</u> between W^{\pm} and J/ψ ($_{s}\mathcal{P}lot$ -weighted), to distinguish DPS (assumed \approx flat in $\Delta\phi$) from direct production

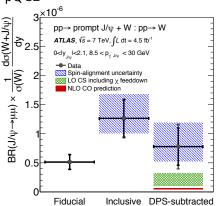

- DPS rate: estimated from
 - ullet DPS ansatz $P_{\psi|W} = \sigma_{\psi}/\sigma_{ ext{eff}}$
 - ATLAS $\sigma_{\rm eff} = 15 \pm 3^{+5}_{-3} \, {\rm mb}$
 - \longrightarrow 10.8 \pm 4.2 events, \lesssim 40% of the sample
- DPS shape validated* w Pythia 8
- ullet direct CS, CO: peaked $\Delta\phi o \pi$



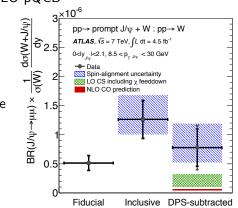
Results as <u>ratios w.r.to inclusive W</u> prodⁿ (measured without J/ψ cuts): 1.48×10^7 events, consistent w NNLO pQCD


• Rfid: limited to fiducial region


- R^{fid}: limited to fiducial region
- $\frac{\mathrm{d}\sigma}{\mathrm{d}p_T}$ differences, associated vs inclusive J/ψ ? \lesssim 1% effect

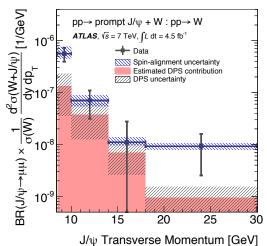

- R^{fid}: limited to fiducial region
- $\frac{\mathrm{d}\sigma}{\mathrm{d}\rho\tau}$ differences, associated vs inclusive J/ψ ? $\lesssim 1\%$ effect
- \bullet $R^{\rm incl},$ "inclusive": corrected to the full ψ decay parameter space

- R^{fid}: limited to fiducial region
- ${{
 m d}\sigma\over{
 m d}
 ho_T}$ differences, associated vs inclusive J/ψ ? \lesssim 1% effect
- $R^{\rm incl}$, "inclusive": corrected to the full ψ decay parameter space
- spin-alignment uncertainty introduced at this step: size ≈ other uncertainties

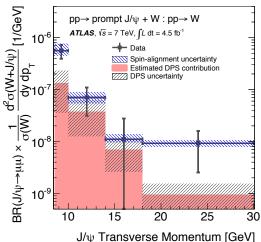

- R^{fid}: limited to fiducial region
- ullet differences, associated vs inclusive J/ψ ? \lesssim 1% effect
- \bullet $R^{\rm incl},$ "inclusive": corrected to the full ψ decay parameter space
- spin-alignment uncertainty introduced at this step: size ≈ other uncertainties
- (pileup subtracted from both)

Results as <u>ratios w.r.to inclusive W</u> prodⁿ (measured without J/ψ cuts): 1.48×10^7 events, consistent w NNLO pQCD

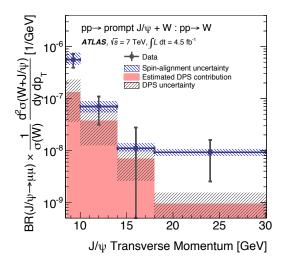
- R^{fid}: limited to fiducial region
- $\frac{\mathrm{d}\sigma}{\mathrm{d}\rho_T}$ differences, associated vs inclusive J/ψ ? \lesssim 1% effect
- \bullet $R^{\rm incl},$ "inclusive": corrected to the full ψ decay parameter space
- spin-alignment uncertainty introduced at this step: size ≈ other uncertainties
- (pileup subtracted from both)
- DPS-subtracted cf. theory:


$$R = (78 \pm 32 \pm 22^{+41}_{-25}) \times 10^{-8}$$

10-32 in LO CS: PLB 726, 218 (2013) 5-6 in NLO CO: PRD 83, 014001 (2011)

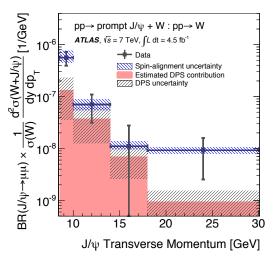

results in $\mathbf{p_T^{\psi}}$ bins: DPS ansatz $\mathrm{d}\hat{\sigma}_{\psi W}^{\mathrm{DPS}} \propto \frac{1}{\sigma_{\mathrm{eff}}(s)} \int \mathrm{d}^4\{x_i\} \, f \cdot f \, \mathrm{d}\hat{\sigma}_{\psi} \, \mathrm{d}\hat{\sigma}_{W}$

gives the p_T dependence as well as the rate for DPS


results in
$$\mathbf{p}_{\mathsf{T}}^{\psi}$$
 bins: DPS ansatz $\mathrm{d}\hat{\sigma}_{\psi W}^{\mathsf{DPS}} \propto \frac{1}{\sigma_{\mathsf{eff}}(s)} \int \mathrm{d}^4\{x_i\} \, f \cdot f \, \mathrm{d}\hat{\sigma}_{\psi} \, \mathrm{d}\hat{\sigma}_{W}$

gives the p_T dependence as well as the rate for DPS another qualitative statement: the excess at high pt provides further warrant (independent of $\Delta \phi$) of a non-DPS-like component

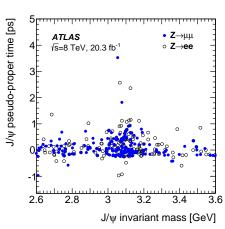
results in
$$\mathbf{p_T^{\psi}}$$
 bins: DPS ansatz $\mathrm{d}\hat{\sigma}_{\psi W}^{\mathsf{DPS}} \propto \frac{1}{\sigma_{\mathsf{eff}}(s)} \int \mathrm{d}^4\{x_i\} \, f \cdot f \, \mathrm{d}\hat{\sigma}_{\psi} \, \mathrm{d}\hat{\sigma}_{W}$


gives the p_T dependence as well as the rate for DPS another qualitative statement: the excess at high p_T provides further warrant (independent of $\Delta \phi$) of a non-DPS-like component the spin-alignment uncert^y also falls as a function of p_T

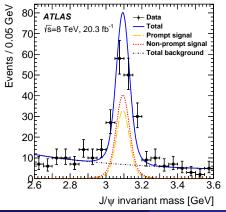
results in
$$\mathbf{p_T^{\psi}}$$
 bins: DPS ansatz $\mathrm{d}\hat{\sigma}_{\psi W}^{\mathrm{DPS}} \propto \frac{1}{\sigma_{\mathrm{eff}}(s)} \int \mathrm{d}^4\{x_i\} \, f \cdot f \, \mathrm{d}\hat{\sigma}_{\psi} \, \mathrm{d}\hat{\sigma}_{W}$

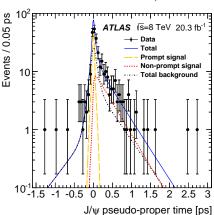
gives the p_T dependence as well as the rate for DPS another qualitative statement: the excess at high p_T provides further warrant (independent of $\Delta \phi$) of a non-DPS-like component the spin-alignment uncert^y also falls as a function of p_T

we see $J/\psi W$ production, consistent with expected DPS contribution + associated prodⁿ at a higher rate than th^y


2012 sample: 20.3 fb⁻¹ \longrightarrow 290 events, 139 $\psi_{\mu\mu} Z_{\mu\mu} + 151 \psi_{\mu\mu} Z_{ee}$

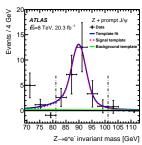
ATLAS Collaboration, ATLAS-BPHY-2014-01, arXiv:1412.6428

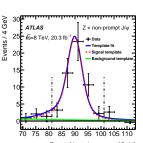

signal evident in (m_{ψ}, m_{Z})

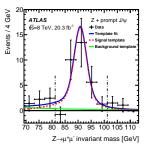

Z→μμ Z invariant mass 100 85 80 75 70 2.6 J/ψ invariant mass [GeV]

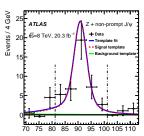
prompt & non-prompt in au

fitted simultaneously w 10^5 inclusive $\psi \to \mu\mu$ events w same selection to determine parameters (*cf. G*-constraint method used for ψ W)

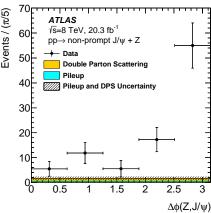



Prompt J/ψ in association with Z^0 at $\sqrt{s} = 8$ TeV


ATLAS Collaboration, ATLAS-BPHY-2014-01, arXiv:1412.6428


change $m_T \mapsto m_Z$ provides extra power;

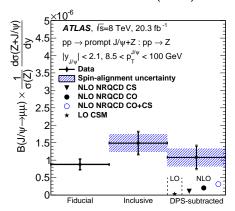
- MC signal template
- ullet multi-jet bkgd from data, inverting ℓ isolation requirements
- of 56 \pm 10 prompt ψ : 0 \pm 4 ee, 1 \pm 4 $\mu\mu$ background events
- 95 ± 12 non-prompt $_{y}$ 1 ± 5 ee, 0 ± 5 $\mu\mu$ background events

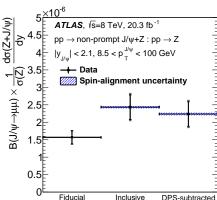

Prompt J/ψ in association with Z^0 at $\sqrt{s} = 8 \text{ TeV}$

ATLAS Collaboration, ATLAS-BPHY-2014-01, arXiv:1412.6428

Analogous calculations for

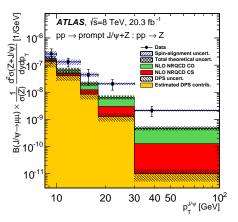
 $5.2^{+1.8}_{-1.3}$ events pileup: DPS calculation $11.1^{+5.7}_{-5.0}$ events

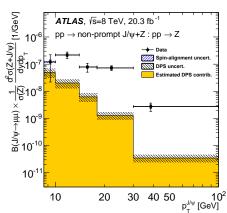

Events / (π/5) ATLAS √s=8 TeV. 20.3 fb⁻¹ 30 $pp \rightarrow prompt J/\psi + Z$ 25 **Double Parton Scattering** Pileup 20 Pileup and DPS Uncertainty 15 10 0.5 $\Delta \phi(Z,J/\psi)$ $2.7^{+0.9}_{-0.6}$ events $5.8^{+2.8}_{-2.6}$ events



Prompt J/ψ in association with Z^0 at $\sqrt{s} = 8 \text{ TeV}$

Again: fiducial, inclusive (w spin-alignment uncert.), and DPS-subtracted cross-section ratios; exceeds theory estimates at both

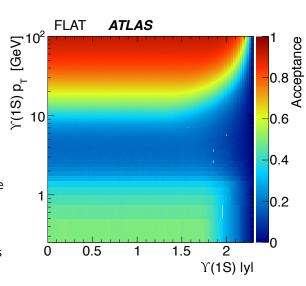

LO: JHEP 03 (2013) 115; note disagreements with NLO: JHEP 02 (2011) 071; erratum ibid. 12 (2012) 010



Prompt J/ψ in association with Z^0 at $\sqrt{s} = 8 \text{ TeV}$

As p_T increases, the data excess over color singlet + octet + DPS grows, and the spin-alignment uncertainty becomes negligible

Summary

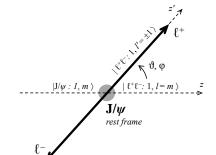

- ullet ATLAS has measured associated $J/\psi~W$ and $J/\psi~Z$ production
- in both cases, we find clean samples, for both prompt and non-prompt J/ψ
- the double parton scattering (DPS) contribution is estimated using the standard ansatz, and our $\sigma_{\rm eff}$ measurement at $\sqrt{s}=7~{\rm TeV}$
- we see evidence for associated production,
 both in overall rates and in its p_T spectrum
- the rates are in excess over available theoretical predictions
- this is an ideal ATLAS/CMS measurement, robust against high rates & thresholds

BACKUP: acceptance for $V \rightarrow \mu^+\mu^-$

for a given $(|y|, p_T)$, \mathcal{A} is the probability that both muons fall within the fiducial volume:

- $p_T^{\mu} > 4 \text{ GeV}$
- $|\eta^{\mu}| < 2.3$
- $\begin{array}{l} 4~{\rm GeV}~{\rm trigger}~{\rm thresholds} \\ \longrightarrow {\rm pronounced}~{\rm structure} \end{array}$

straightforward extension to $\pi^+\pi^-\mu^+\mu^-$ and more complex final states

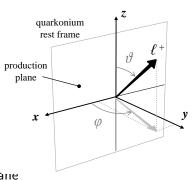


Faccioli, Lourenco, Seixas, and Wöhri, EPJC 69, 657-673 (2010)

for
$$(J^{PC}=1^{--}) \mid V
angle = b_{+1} \mid +1
angle + b_{-1} \mid -1
angle + b_0 \mid 0
angle$$
 decaying $ightarrow \ell^+ \ell^-$,

ullet the angular distribution $W(\cos \vartheta, \varphi)$

$$\propto \frac{\mathcal{N}}{(3+\lambda_{\vartheta})} \left(1 + \lambda_{\vartheta} \cos^{2} \vartheta + \lambda_{\varphi} \sin^{2} \vartheta \cos 2\varphi + \lambda_{\vartheta\varphi} \sin 2\vartheta \cos \varphi + \lambda_{\varphi}^{\perp} \sin^{2} \vartheta \sin 2\varphi + \lambda_{\vartheta\varphi}^{\perp} \sin 2\vartheta \sin \varphi\right)$$

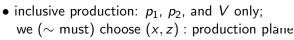

Faccioli, Lourenco, Seixas, and Wöhri, EPJC 69, 657-673 (2010)

for
$$(J^{PC}=1^{--}) \mid V
angle = b_{+1} \mid +1
angle + b_{-1} \mid -1
angle + b_0 \mid 0
angle$$
 decaying $ightarrow \ell^+ \ell^-$,

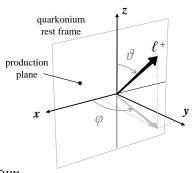
ullet the angular distribution $W(\cos \vartheta, \varphi)$

$$\propto \frac{\mathcal{N}}{(3+\lambda_{\vartheta})} \left(1 + \lambda_{\vartheta} \cos^2 \vartheta + \lambda_{\varphi} \sin^2 \vartheta \cos 2\varphi + \lambda_{\vartheta\varphi} \sin 2\vartheta \cos \varphi + \lambda_{\varphi}^{\perp} \sin^2 \vartheta \sin 2\varphi + \lambda_{\vartheta\varphi}^{\perp} \sin 2\vartheta \sin \varphi \right)$$

• inclusive production: p_1 , p_2 , and V only; we (\sim must) choose (x, z): production plane



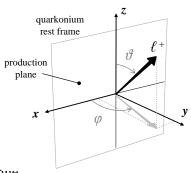
Faccioli, Lourenco, Seixas, and Wöhri, EPJC 69, 657-673 (2010)


for
$$(J^{PC}=1^{--})\ket{V}=b_{+1}\ket{+1}+b_{-1}\ket{-1}+b_0\ket{0}$$
 decaying o $\ell^+\ell^-$,

ullet the angular distribution $W(\cos \vartheta, \varphi)$

$$\begin{split} &\propto \ \frac{\mathcal{N}}{\left(3+\lambda_{\vartheta}\right)} \left(1+\lambda_{\vartheta} \cos^2{\vartheta}\right. \\ &+ \ \lambda_{\varphi} \sin^2{\vartheta} \cos{2\varphi} \ + \ \lambda_{\vartheta\varphi} \sin{2\vartheta} \cos{\varphi} \\ &+ \ \lambda_{\varphi}^{\perp} \sin^2{\vartheta} \sin{2\varphi} \ + \ \lambda_{\vartheta\varphi}^{\perp} \sin{2\vartheta} \sin{2\vartheta} \sin{\varphi} \right) \end{split}$$

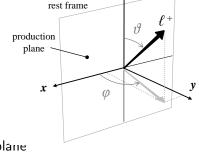
• reflection-odd terms unobservable (parity)


Faccioli, Lourenco, Seixas, and Wöhri, EPJC 69, 657-673 (2010)

for
$$(J^{PC}=1^{--})\ket{V}=b_{+1}\ket{+1}+b_{-1}\ket{-1}+b_0\ket{0}$$
 decaying o $\ell^+\ell^-$,

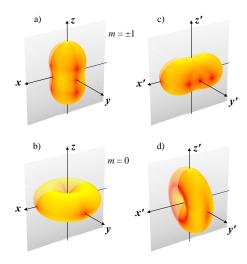
ullet the angular distribution $W(\cos \vartheta, \varphi)$

$$\propto \frac{\mathcal{N}}{(3+\lambda_{\vartheta})} \left(1 + \lambda_{\vartheta} \cos^{2} \vartheta + \lambda_{\varphi} \sin^{2} \vartheta \cos 2\varphi + \lambda_{\vartheta\varphi} \sin 2\vartheta \cos \varphi + \lambda_{\varphi}^{\perp} \sin^{2} \vartheta \sin^{2} \vartheta \sin 2\varphi + \lambda_{\vartheta\varphi}^{\perp} \sin 2\vartheta \sin \varphi\right)$$


- inclusive production: p_1 , p_2 , and V only; we (\sim must) choose (x, z): production plane
- reflection-odd terms unobservable (parity)

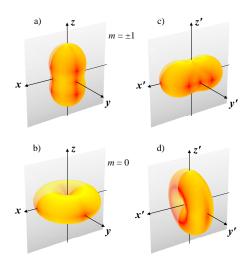
for
$$(J^{PC}=1^{--}) \mid V
angle = b_{+1} \mid +1
angle + b_{-1} \mid -1
angle + b_0 \mid 0
angle$$
 decaying $ightarrow \ell^+ \ell^-$,

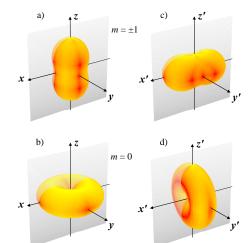
ullet the angular distribution $W(\cos \vartheta, arphi)$

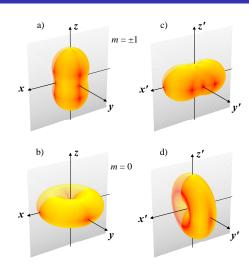

$$\propto \frac{\mathcal{N}}{(3+\lambda_{\vartheta})} \left(1 + \lambda_{\vartheta} \cos^{2} \vartheta + \lambda_{\varphi} \sin^{2} \vartheta \cos 2\varphi + \lambda_{\vartheta\varphi} \sin 2\vartheta \cos \varphi + \lambda_{\varphi}^{\perp} \sin^{2} \vartheta \sin 2\varphi + \lambda_{\vartheta\varphi}^{\perp} \sin 2\vartheta \sin \varphi \right)$$

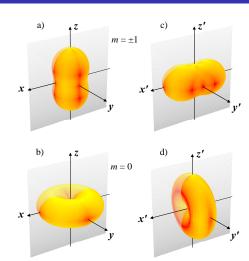

quarkonium

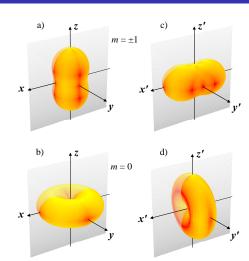
- inclusive production: p_1 , p_2 , and V only; we (\sim must) choose (x, z): production plane
- reflection-odd terms unobservable (parity)
- ullet full angular distributions $(\lambda_{\vartheta},\,\lambda_{arphi},\,\lambda_{arphi})$ in general needed . . .

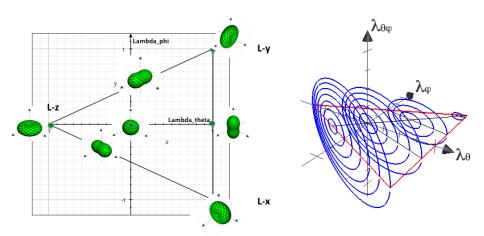

• L: polarized $\begin{cases} \text{transversely} \\ \text{longitudinally} \end{cases}$

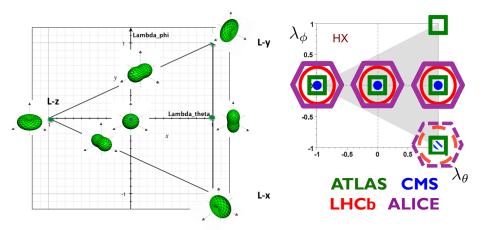

- L: polarized $\begin{cases} \text{transversely} \\ \text{longitudinally} \end{cases}$
- \bullet R: meas^t frame rotated by 90°


- L: polarized $\begin{cases} \text{transversely} \\ \text{longitudinally} \end{cases}$
- \bullet R: meas^t frame rotated by 90°
- $\bullet \ \ \text{integration over azimuth} \ \varphi \longrightarrow \\$


- L: polarized $\begin{cases} \text{transversely} \\ \text{longitudinally} \end{cases}$
- \bullet R: meas^t frame rotated by 90°
- integration over azimuth $\varphi \longrightarrow$ longitudinal distⁿ (d) looks like


- L: polarized $\begin{cases} \text{transversely} \\ \text{longitudinally} \end{cases}$
- R: meas^t frame rotated by 90°
- integration over azimuth $\varphi \longrightarrow$ longitudinal distⁿ (d) looks like transverse distⁿ (a)


- L: polarized $\begin{cases} \text{transversely} \\ \text{longitudinally} \end{cases}$
- \bullet R: meas^t frame rotated by 90°
- integration over azimuth $\varphi \longrightarrow$ longitudinal distⁿ (d) looks like transverse distⁿ (a)
- λ_{ϑ} -only measurements (à la TeVatron Run I) can't be compared without assumptions about polⁿ frame


- L: polarized $\begin{cases} \text{transversely} \\ \text{longitudinally} \end{cases}$
- \bullet R: meas^t frame rotated by 90°
- integration over azimuth $\varphi \longrightarrow$ longitudinal distⁿ (d) looks like transverse distⁿ (a)
- λ_{ϑ} -only measurements (à la TeVatron Run I) can't be compared without assumptions about polⁿ frame
- experimental acceptance is also typically a f^n of $(\lambda_{\vartheta}, \lambda_{\varphi}, \lambda_{\vartheta\varphi})$

ullet limited range of $(\lambda_{\vartheta},\,\lambda_{arphi},\,\lambda_{arthetaarphi})$ values allowed

- ullet limited range of $(\lambda_{artheta},\,\lambda_{arphi},\,\lambda_{arthetaarphi})$ values allowed
- LHC experiments quote results for each of a set of working points

